Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Pediatr Neurol ; 144: 97-98, 2023 07.
Article in English | MEDLINE | ID: covidwho-2326647

ABSTRACT

The etiology of acute flaccid myelitis (AFM) has yet to be determined. Viral link has been suggested, but severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated AFM has not been reported in children. We describe a three-year-old boy, with AFM associated with coronavirus disease 2019 (COVID-19) infection. In the era of COVID-19 pandemic, patients with AFM should be tested for SARS-CoV-2.


Subject(s)
COVID-19 , Central Nervous System Viral Diseases , Enterovirus D, Human , Enterovirus Infections , Myelitis , Neuromuscular Diseases , Male , Child , Humans , Child, Preschool , Pandemics , COVID-19/complications , Enterovirus Infections/complications , Enterovirus Infections/diagnosis , SARS-CoV-2 , Myelitis/diagnostic imaging , Myelitis/etiology , Myelitis/epidemiology , Neuromuscular Diseases/complications , Central Nervous System Viral Diseases/complications , Central Nervous System Viral Diseases/diagnosis , Central Nervous System Viral Diseases/epidemiology , Acute Disease
2.
Nat Commun ; 14(1): 1783, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2297648

ABSTRACT

Current methods for detecting infections either require a sample collected from an actively infected site, are limited in the number of agents they can query, and/or yield no information on the immune response. Here we present an approach that uses temporally coordinated changes in highly-multiplexed antibody measurements from longitudinal blood samples to monitor infection events at sub-species resolution across the human virome. In a longitudinally-sampled cohort of South African adolescents representing >100 person-years, we identify >650 events across 48 virus species and observe strong epidemic effects, including high-incidence waves of Aichivirus A and the D68 subtype of Enterovirus D earlier than their widespread circulation was appreciated. In separate cohorts of adults who were sampled at higher frequency using self-collected dried blood spots, we show that such events temporally correlate with symptoms and transient inflammatory biomarker elevations, and observe the responding antibodies to persist for periods ranging from ≤1 week to >5 years. Our approach generates a rich view of viral/host dynamics, supporting novel studies in immunology and epidemiology.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Epidemics , Viruses , Adult , Adolescent , Humans , Virome , Antibodies, Viral
3.
Postgrad Med J ; 99(1171): 372-374, 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-2247836

ABSTRACT

In March 2020, WHO declared SARS-CoV-2 a global pandemic and lockdowns were enforced in most of the United States. Self-protective measures and travel restrictions were implemented, and schools/universities initiated online learning. Consequently, the global incidence and hospitalization rates of seasonal respiratory infections decreased significantly up to early 2021. Despite the decrease in hospitalization rates due to respiratory illnesses other than Covid-19, hospitals and healthcare providers faced huge stressors regarding workload dueto the pandemic. Furthermore, higher vaccination rates across the United States decreased non pharmaceutical interventions (NPI) implementation increasing the risk of major seasonal viral outbreaks. This editorial discusses the increased Rhinovirus/Enterovirus infections in the United States, challenges faced by healthcare providers and provides recommendations to address the issue.


Subject(s)
COVID-19 , Communicable Diseases , Enterovirus D, Human , Enterovirus Infections , Influenza, Human , Humans , United States/epidemiology , Enterovirus Infections/epidemiology , Rhinovirus , Pandemics/prevention & control , Influenza, Human/epidemiology , Influenza, Human/prevention & control , COVID-19/epidemiology , SARS-CoV-2 , Communicable Disease Control , Health Personnel
5.
MMWR Morb Mortal Wkly Rep ; 71(40): 1265-1270, 2022 Oct 07.
Article in English | MEDLINE | ID: covidwho-2056549

ABSTRACT

Increases in severe respiratory illness and acute flaccid myelitis (AFM) among children and adolescents resulting from enterovirus D68 (EV-D68) infections occurred biennially in the United States during 2014, 2016, and 2018, primarily in late summer and fall. Although EV-D68 annual trends are not fully understood, EV-D68 levels were lower than expected in 2020, potentially because of implementation of COVID-19 mitigation measures (e.g., wearing face masks, enhanced hand hygiene, and physical distancing) (1). In August 2022, clinicians in several geographic areas notified CDC of an increase in hospitalizations of pediatric patients with severe respiratory illness and positive rhinovirus/enterovirus (RV/EV) test results.* Surveillance data were analyzed from multiple national data sources to characterize reported trends in acute respiratory illness (ARI), asthma/reactive airway disease (RAD) exacerbations, and the percentage of positive RV/EV and EV-D68 test results during 2022 compared with previous years. These data demonstrated an increase in emergency department (ED) visits by children and adolescents with ARI and asthma/RAD in late summer 2022. The percentage of positive RV/EV test results in national laboratory-based surveillance and the percentage of positive EV-D68 test results in pediatric sentinel surveillance also increased during this time. Previous increases in EV-D68 respiratory illness have led to substantial resource demands in some hospitals and have also coincided with increases in cases of AFM (2), a rare but serious neurologic disease affecting the spinal cord. Therefore, clinicians should consider AFM in patients with acute flaccid limb weakness, especially after respiratory illness or fever, and ensure prompt hospitalization and referral to specialty care for such cases. Clinicians should also test for poliovirus infection in patients suspected of having AFM because of the clinical similarity to acute flaccid paralysis caused by poliovirus. Ongoing surveillance for EV-D68 is critical to ensuring preparedness for possible future increases in ARI and AFM.


Subject(s)
Asthma , COVID-19 , Enterovirus D, Human , Enterovirus Infections , Myelitis , Respiratory Tract Infections , Adolescent , Asthma/epidemiology , Central Nervous System Viral Diseases , Child , Disease Outbreaks , Enterovirus Infections/epidemiology , Humans , Myelitis/epidemiology , Neuromuscular Diseases , Respiratory Tract Infections/epidemiology , Rhinovirus , United States/epidemiology
6.
Viruses ; 14(5)2022 05 09.
Article in English | MEDLINE | ID: covidwho-1875804

ABSTRACT

Enterovirus D68 (EVD68) was recently identified as an important cause of respiratory illness and acute flaccid myelitis (AFM), mostly in children. Here, we examined 472 pediatric patients diagnosed with severe respiratory illness and screened for EVD68 between April and October 2021. In parallel, samples collected from a wastewater treatment plant (WWTP) covering the residential area of the hospitalized patients were also tested for EVD68. Of the 472 clinical samples evaluated, 33 (7%) patients were positive for EVD68 RNA. All wastewater samples were positive for EVD68, with varying viral genome copy loads. Calculated EVD68 genome copies increased from the end of May until July 2021 and dramatically decreased at the beginning of August. A similar trend was observed in both clinical and wastewater samples during the period tested. Sequence analysis of EVD68-positive samples indicated that all samples originated from the same branch of subclade B3. This study is the first to use wastewater-based epidemiology (WBE) to monitor EVD68 dynamics by quantitative detection and shows a clear correlation with clinically diagnosed cases. These findings highlight the potential of WBE as an important tool for continuous surveillance of EVD68 and other enteroviruses.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Child , Disease Outbreaks , Enterovirus D, Human/genetics , Enterovirus Infections/epidemiology , Humans , Israel/epidemiology , Wastewater
7.
PLoS Pathog ; 18(5): e1010515, 2022 05.
Article in English | MEDLINE | ID: covidwho-1875097

ABSTRACT

Worldwide outbreaks of enterovirus D68 (EV-D68) in 2014 and 2016 have caused serious respiratory and neurological disease. We collected samples from several European countries during the 2018 outbreak and determined 53 near full-length genome ('whole genome') sequences. These sequences were combined with 718 whole genome and 1,987 VP1-gene publicly available sequences. In 2018, circulating strains clustered into multiple subgroups in the B3 and A2 subclades, with different phylogenetic origins. Clusters in subclade B3 emerged from strains circulating primarily in the US and Europe in 2016, though some had deeper roots linking to Asian strains, while clusters in A2 traced back to strains detected in East Asia in 2015-2016. In 2018, all sequences from the USA formed a distinct subgroup, containing only three non-US samples. Alongside the varied origins of seasonal strains, we found that diversification of these variants begins up to 18 months prior to the first diagnostic detection during a EV-D68 season. EV-D68 displays strong signs of continuous antigenic evolution and all 2018 A2 strains had novel patterns in the putative neutralizing epitopes in the BC- and DE-loops. The pattern in the BC-loop of the USA B3 subgroup had not been detected on that continent before. Patients with EV-D68 in subclade A2 were significantly older than patients with a B3 subclade virus. In contrast to other subclades, the age distribution of A2 is distinctly bimodal and was found primarily among children and in the elderly. We hypothesize that EV-D68's rapid evolution of surface proteins, extensive diversity, and high rate of geographic mixing could be explained by substantial reinfection of adults. Better understanding of evolution and immunity across diverse viral pathogens, including EV-D68 and SARS-CoV-2, is critical to pandemic preparedness in the future.


Subject(s)
COVID-19 , Enterovirus D, Human , Enterovirus Infections , Respiratory Tract Infections , Adult , Aged , Child , Demography , Disease Outbreaks , Enterovirus D, Human/genetics , Enterovirus Infections/epidemiology , Humans , Phylogeny , SARS-CoV-2
8.
Euro Surveill ; 26(45)2021 Nov.
Article in English | MEDLINE | ID: covidwho-1630353

ABSTRACT

We report a rapid increase in enterovirus D68 (EV-D68) infections, with 139 cases reported from eight European countries between 31 July and 14 October 2021. This upsurge is in line with the seasonality of EV-D68 and was presumably stimulated by the widespread reopening after COVID-19 lockdown. Most cases were identified in September, but more are to be expected in the coming months. Reinforcement of clinical awareness, diagnostic capacities and surveillance of EV-D68 is urgently needed in Europe.


Subject(s)
COVID-19 , Enterovirus D, Human , Enterovirus Infections , Enterovirus , Myelitis , Respiratory Tract Infections , Communicable Disease Control , Disease Outbreaks , Enterovirus D, Human/genetics , Enterovirus Infections/diagnosis , Enterovirus Infections/epidemiology , Europe/epidemiology , Humans , Myelitis/epidemiology , SARS-CoV-2
9.
Viruses ; 14(1)2022 01 13.
Article in English | MEDLINE | ID: covidwho-1625824

ABSTRACT

Infection with enterovirus D68 (EV-D68) has been linked with severe neurological disease such as acute flaccid myelitis (AFM) in recent years. However, active surveillance for EV-D68 is lacking, which makes full assessment of this association difficult. Although a high number of EV-D68 infections were expected in 2020 based on the EV-D68's known biannual circulation patterns, no apparent increase in EV-D68 detections or AFM cases was observed during 2020. We describe an upsurge of EV-D68 detections in wastewater samples from the United Kingdom between July and November 2021 mirroring the recently reported rise in EV-D68 detections in clinical samples from various European countries. We provide the first publicly available 2021 EV-D68 sequences showing co-circulation of EV-D68 strains from genetic clade D and sub-clade B3 as in previous years. Our results show the value of environmental surveillance (ES) for the early detection of circulating and clinically relevant human viruses. The use of a next-generation sequencing (NGS) approach helped us to estimate the prevalence of EV-D68 viruses among EV strains from other EV serotypes and to detect EV-D68 minor variants. The utility of ES at reducing gaps in virus surveillance for EV-D68 and the possible impact of nonpharmaceutical interventions introduced to control the COVID-19 pandemic on EV-D68 transmission dynamics are discussed.


Subject(s)
Enterovirus D, Human/isolation & purification , Wastewater/virology , COVID-19/epidemiology , COVID-19/prevention & control , Capsid Proteins/genetics , Enterovirus D, Human/classification , Enterovirus D, Human/genetics , Humans , Phylogeny , RNA, Viral/genetics , SARS-CoV-2 , Sequence Analysis, DNA , United Kingdom/epidemiology , Wastewater-Based Epidemiological Monitoring , Water Microbiology
10.
MMWR Morb Mortal Wkly Rep ; 70(47): 1623-1628, 2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1534933

ABSTRACT

Enterovirus D68 (EV-D68) is associated with a broad spectrum of illnesses, including mild to severe acute respiratory illness (ARI) and acute flaccid myelitis (AFM). Enteroviruses, including EV-D68, are typically detected in the United States during late summer through fall, with year-to-year fluctuations. Before 2014, EV-D68 was infrequently reported to CDC (1). However, numbers of EV-D68 detection have increased in recent years, with a biennial pattern observed during 2014-2018 in the United States, after the expansion of surveillance and wider availability of molecular testing. In 2014, a national outbreak of EV-D68 was detected (2). EV-D68 was also reported in 2016 via local (3) and passive national (4) surveillance. EV-D68 detections were limited in 2017, but substantial circulation was observed in 2018 (5). To assess recent levels of circulation, EV-D68 detections in respiratory specimens collected from patients aged <18 years* with ARI evaluated in emergency departments (EDs) or admitted to one of seven U.S. medical centers† within the New Vaccine Surveillance Network (NVSN) were summarized. This report provides a provisional description of EV-D68 detections during July-November in 2018, 2019 and 2020, and describes the demographic and clinical characteristics of these patients. In 2018, a total of 382 EV-D68 detections in respiratory specimens obtained from patients aged <18 years with ARI were reported by NVSN; the number decreased to six detections in 2019 and 30 in 2020. Among patients aged <18 years with EV-D68 in 2020, 22 (73%) were non-Hispanic Black (Black) persons. EV-D68 detections in 2020 were lower than anticipated based on the biennial circulation pattern observed since 2014. The circulation of EV-D68 in 2020 might have been limited by widespread COVID-19 mitigation measures; how these changes in behavior might influence the timing and levels of circulation in future years is unknown. Ongoing monitoring of EV-D68 detections is warranted for preparedness for EV-D68-associated ARI and AFM.


Subject(s)
Disease Outbreaks , Enterovirus D, Human/isolation & purification , Enterovirus Infections/epidemiology , Population Surveillance/methods , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Adolescent , Child , Child, Preschool , Enterovirus D, Human/genetics , Enterovirus Infections/virology , Female , Humans , Infant , Male , United States/epidemiology
11.
Biochemistry ; 60(39): 2925-2931, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-1402014

ABSTRACT

Rupintrivir targets the 3C cysteine proteases of the picornaviridae family, which includes rhinoviruses and enteroviruses that cause a range of human diseases. Despite being a pan-3C protease inhibitor, rupintrivir activity is extremely weak against the homologous 3C-like protease of SARS-CoV-2. In this study, the crystal structures of rupintrivir were determined bound to enterovirus 68 (EV68) 3C protease and the 3C-like main protease (Mpro) from SARS-CoV-2. While the EV68 3C protease-rupintrivir structure was similar to previously determined complexes with other picornavirus 3C proteases, rupintrivir bound in a unique conformation to the active site of SARS-CoV-2 Mpro splitting the catalytic cysteine and histidine residues. This bifurcation of the catalytic dyad may provide a novel approach for inhibiting cysteine proteases.


Subject(s)
Antiviral Agents/metabolism , Coronavirus 3C Proteases/metabolism , Cysteine Proteinase Inhibitors/metabolism , Isoxazoles/metabolism , Phenylalanine/analogs & derivatives , Pyrrolidinones/metabolism , SARS-CoV-2/enzymology , Valine/analogs & derivatives , Antiviral Agents/chemistry , Catalytic Domain , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Crystallography, X-Ray , Cysteine Proteinase Inhibitors/chemistry , Enterovirus D, Human/enzymology , Hydrogen Bonding , Isoxazoles/chemistry , Phenylalanine/chemistry , Phenylalanine/metabolism , Protein Binding , Pyrrolidinones/chemistry , Static Electricity , Valine/chemistry , Valine/metabolism
12.
J Med Virol ; 93(7): 4392-4398, 2021 07.
Article in English | MEDLINE | ID: covidwho-1263103

ABSTRACT

With the arrival of coronavirus disease 2019 (COVID-19) in Brazil in February 2020, several preventive measures were taken by the population aiming to avoid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection including the use of masks, social distancing, and frequent hand washing then, these measures may have contributed to preventing infection also by other respiratory viruses. Our goal was to determine the frequencies of Influenza A and B viruses (FLUAV/FLUBV), human mastadenovirus C (HAdV-C), Enterovirus 68 (EV-68), and rhinovirus (RV) besides SARS-CoV-2 among hospitalized patients suspect of COVID-19 with cases of acute respiratory disease syndrome (ARDS) in the period of March to December 2020 and to detect possible coinfections among them. Nucleic acid detection was performed using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) in respiratory samples using naso-oropharyngeal swabs and bronchoalveolar lavage. A total of 418 samples of the 987 analyzed (42.3%) were positive for SARS-CoV-2, 16 (1.62%) samples were positive for FLUAV, no sample was positive for FLUBV or EV-68, 67 (6.78%) samples were positive for HAdV-C, 55 samples were positive for RV 1/2 (26.3%) and 37 for RV 2/2 (13.6%). Coinfections were also detected, including a triple coinfection with SARS-CoV-2, FLUAV, and HAdV-C. In the present work, a very low frequency of FLUV was reported among hospitalized patients with ARDS compared to the past years, probably due to preventive measures taken to avoid COVID-19 and the high influenza vaccination coverage in the region in which this study was performed.


Subject(s)
Adenoviridae Infections/epidemiology , COVID-19/epidemiology , Common Cold/epidemiology , Enterovirus Infections/epidemiology , Influenza, Human/epidemiology , Physical Distancing , Adenoviridae Infections/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , COVID-19/prevention & control , Child , Child, Preschool , Coinfection/epidemiology , Coinfection/virology , Common Cold/prevention & control , Enterovirus D, Human/genetics , Enterovirus D, Human/isolation & purification , Enterovirus Infections/prevention & control , Female , Humans , Infant , Influenza A virus/genetics , Influenza A virus/isolation & purification , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza, Human/prevention & control , Male , Masks , Mastadenovirus/genetics , Mastadenovirus/isolation & purification , Middle Aged , Nucleic Acid Amplification Techniques/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Rhinovirus/genetics , Rhinovirus/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Young Adult
13.
Sci Transl Med ; 13(584)2021 03 10.
Article in English | MEDLINE | ID: covidwho-1127537

ABSTRACT

Acute flaccid myelitis (AFM) recently emerged in the United States as a rare but serious neurological condition since 2012. Enterovirus D68 (EV-D68) is thought to be a main causative agent, but limited surveillance of EV-D68 in the United States has hampered the ability to assess their causal relationship. Using surveillance data from the BioFire Syndromic Trends epidemiology network in the United States from January 2014 to September 2019, we characterized the epidemiological dynamics of EV-D68 and found latitudinal gradient in the mean timing of EV-D68 cases, which are likely climate driven. We also demonstrated a strong spatiotemporal association of EV-D68 with AFM. Mathematical modeling suggested that the recent dominant biennial cycles of EV-D68 dynamics may not be stable. Nonetheless, we predicted that a major EV-D68 outbreak, and hence an AFM outbreak, would have still been possible in 2020 under normal epidemiological conditions. Nonpharmaceutical intervention efforts due to the ongoing COVID-19 pandemic are likely to have reduced the sizes of EV-D68 and AFM outbreaks in 2020, illustrating the broader epidemiological impact of the pandemic.


Subject(s)
Central Nervous System Viral Diseases/epidemiology , Central Nervous System Viral Diseases/virology , Enterovirus D, Human/physiology , Myelitis/epidemiology , Myelitis/virology , Neuromuscular Diseases/epidemiology , Neuromuscular Diseases/virology , Disease Susceptibility , Epidemiological Monitoring , Humans , Models, Biological , Spatio-Temporal Analysis , United States/epidemiology
15.
Pediatr Infect Dis J ; 39(8): 687-693, 2020 08.
Article in English | MEDLINE | ID: covidwho-913268

ABSTRACT

BACKGROUND: Acute lower respiratory tract infections (ALRIs) are the most common disease for hospitalized children in Japan. The aim of this study was to identify viruses in children hospitalized for ALRIs and to demonstrate epidemiologic and clinical characteristics in Japan. METHODS: During a 2-year period from February 2013 to January 2015, we collected nasopharyngeal swab specimens from almost all hospitalized children with ALRIs in Nagasaki, a regional city of Japan, and its environs. Viruses were detected by multiplex polymerase chain reaction from these samples. RESULTS: We detected one or more viruses from 259 (69%) of 374 patients, 227 of whom were infected with a single virus, 30 with 2, and 2 with 3 viruses. Detected viruses in this study were rhinovirus (46.4%), respiratory syncytial virus (29.7%), human metapneumovirus (6.8%), parainfluenza virus (5.5%), enterovirus D68 (3.4%), influenza virus (2.7%), adenovirus (2.4%), bocavirus (2.0%) and Coxsackie virus (1.0%). We detected a seasonal shift in respiratory syncytial virus outbreaks from the 2013-2014 to the 2014-2015 seasons. There was no significant difference in clinical course and severity among those viruses. Patients with a history of asthma or underlying diseases were older and more frequently required oxygen therapy than previously healthy patients. CONCLUSIONS: Viral etiology in hospitalized children with ALRIs in Nagasaki, Japan, was similar to that in many other countries. Enterovirus D68, which was recently recognized as a causative agent of severe ALRIs, was also identified in this study area. Severity of ALRIs may depend on underlying disease rather than type of etiologic virus.


Subject(s)
Hospitalization/statistics & numerical data , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Virus Diseases/epidemiology , Viruses/isolation & purification , Acute Disease , Child, Preschool , Cities/epidemiology , Coinfection/epidemiology , Coinfection/virology , Enterovirus D, Human/genetics , Enterovirus Infections/epidemiology , Female , Humans , Infant , Japan/epidemiology , Male , Nasopharynx/virology , Prospective Studies , Seasons , Viruses/classification , Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL